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Research Paper 

Abstract: This study optimizes green porous oil adsorbent material design and selection 
to improve adsorption efficiency, cost-effectiveness, and sustainability to address the 
growing environmental challenge of oil spill remediation. It examined 50 green porous 
adsorbent materials including key properties and performance metrics. Material 
development is systematic to improve oil spill cleanup solutions' scalability, performance, 
and environmental impact. Experimental optimization, computational modeling, 
machine learning prediction, and multi-criteria decision analysis used for high-
performance oil spill adsorbents. The surface area, pore size, surface functionalization, 
and hydrophobicity index of green porous adsorbents were examined. Multiphysics (v5.6, 
Subsurface Flow Module) and ANSYS Simulated oil-water adsorption in fluid porous 
media. For multiphysics coupling flexibility and porous structure transport modeling, 
COMSOL that simulate oil-water separation processes under various operational 
conditions. COMSOL Multiphysics and ANSYS Fluent modeled flow dynamics and 
adsorption in porous media with experimental optimization. Based on material 
properties, artificial neural networks and random forests were trained on experimental 
and simulated data to predict adsorption capacities and reveal adsorbent material 
behavior under different conditions. Under operational conditions, the integrated 
framework optimized material properties to improve adsorption efficiency. Machine 
learning and modeling predicted material behavior, while decision analysis made 
selection objective and transparent. This scalable, data-driven optimization of adsorbent 
materials helps academia and industry develop and deploy oil spill remediation solutions 
faster. It emphasises integrating experimental, computational, predictive, and decision-
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making methods for oil spill remediation and other environmental and industrial 
material optimisation problems. 

Keywords: Green Porous Adsorbents, Oil Spill Remediation, Decision Support Systems, 
Artificial Intelligence, Material Optimization 

1. Introduction 

Oil pollution, long a major environmental threat to marine and terrestrial 
ecosystems, causes irreversible damage (Asadu et al., 2022). Oil spills from shipping 
accidents, offshore drilling, pipeline ruptures, and other industrial operations make 
environmental management and recovery difficult. Oil pollution harms marine life, 
water resources, and terrestrial habitats, affecting biodiversity, food chains, and 
ecosystems. Innovative and effective oil pollution cleanup methods are needed due to 
industrial growth and oil spills. Skimming and dispersants are inefficient, 
environmentally harmful, and less scalable. Developing efficient and sustainable oil 
adsorbent materials is crucial to reducing oil pollution's long-term effects (Aladeokin, 
2023; Vo et al., 2023). 

Porous, eco-friendly oil spill adsorbents are popular because of their sustainability, 
high surface areas, large pore volumes, and tunable surface properties, green porous 
adsorbents like natural fibers, biomass-derived materials, and composites are 
becoming more popular (Paul et al., 2024). These adsorbents can effectively capture 
and remove oil from water through physical or chemical interactions like adsorption, 
making them promising oil spill remediation candidates. These materials are 
promising, but several factors prevent their widespread use (Al-Huqail et al., 2025). 
Pore structure, surface functionalization, material synthesis, temperature, and oil type 
affect these materials' performance. Optimizing these factors for oil adsorption 
efficiency and sustainability is difficult. Second, few methods combine experimental 
optimization and computational modeling to predict and improve these materials' 
adsorption performance across scenarios (Al-Huqail et al., 2025; Goswami et al., 
2022). Oil spills harm the environment and economy, so these issues must be 
addressed. Big spills like the 2010 Deepwater Horizon devastated the Gulf of Mexico 
ecosystem and local economies. Oil spill cleanup is expensive and can damage 
ecosystems for decades. Thus, improving current cleanup efforts and preparing for 
future oil pollution challenges requires developing more efficient, cost-effective, and 
environmentally sustainable oil spill cleanup materials (Ma et al., 2021; Prabhu et al., 
2023). This research improves oil adsorbent materials and tackle traditional methods' 
drawbacks to improve global oil spill remediation. 

Adsorbent material development has progressed, but optimization, modeling, and 
selection literature is lacking. Most porous oil adsorbent research includes empirical 
studies of material adsorption under specific conditions. Few studies quantify the 
complex relationships between material properties, operational conditions, and 
performance (Apostol et al., 2024; Paul et al., 2024; Syazmin et al., 2023). Many studies 
examine adsorbent surface area, pore size, and hydrophobicity, but few examine how 
these properties interact under real-world spill conditions like oil types, temperatures, 
and salinity (Igwegbe et al., 2024; Jilagam et al., 2023). Very few computational models 
and decision-support frameworks can predict and optimize material performance 
across many variables. CFD (computational fluid dynamics) simulations and machine 
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learning algorithms can improve material behavior predictability and illuminate 
adsorbent property-environment interactions, but few studies use them. Multi-criteria 
decision analysis (MCDA) and other material selection frameworks are often not fully 
integrated with quantitative modeling, limiting their practicality (Jayarathna et al., 
2024; H. Zhang et al., 2024). 

Green porous oil adsorbent materials have advanced, but most previous studies 
ignored complex material properties, synthesis conditions, and environmental factors. 
Traditional methods optimise one variable at a time under controlled conditions, 
yielding fragmented insights that are hard to apply to large-scale or real-world oil 
spills, where oil types, water salinity, temperature, and pressure affect adsorbent 
performance. Predicting performance, generalizing findings, and designing new 
materials with tailored properties is harder without integrated modeling and 
predictive tools. This study addresses these limitations with a multi-phase framework 
that integrates experimental optimization, CFD, machine learning, and multi-criteria 
decision-making. Experimental data supports simulation, simulation outputs refine 
predictive models, and models guide material synthesis and selection in a dynamic 
development loop. Quantifying the relationships between structural properties like 
BET surface area, pore size, and surface chemistry and environmental or operational 
parameters lets designers design materials with optimal performance from the start. 

This study simulates fluid flow and adsorption kinetics in complex porous media 
using COMSOL Multiphysics and ANSYS Fluent, and artificial neural networks and 
random forests trained on experimental and simulated data predict adsorption 
capacity under various conditions The AHP and TOPSIS rank materials by 
performance, sustainability, and economic feasibility. The integrative framework 
reduces physical testing by eliminating methodological silos and using data. Rationally 
engineering green porous adsorbents for oil spill remediation advances material 
science and sustainability. 

This research optimizes and computationally model green porous oil adsorbent 
selection, performance, and design. The RSM and Taguchi experimental optimization 
methods will use COMSOL and ANSYS. Dynamic flow adsorption simulations. ANNs 
and RFs predict material adsorption capacities from properties and environment. The 
study ranks and chooses the best materials based on efficiency, cost, reusability, and 
sustainability using multi-criteria decision-making (MCDM) methods like AHP and 
TOPSIS. Green porous adsorbents will be evaluated for sustainability and performance 
(Eboibi et al., 2023; Yan et al., 2021; Yue et al., 2022). 

A novel, integrated framework optimizes green porous oil adsorbent design and 
selection using experimental optimization, computational modeling, machine learning 
prediction, and multi-criteria decision-making. These methods examine how material, 
operational, and environmental factors affect oil adsorption efficiency. CFD 
simulations show dynamic adsorption, while RSM and Taguchi DOE find optimal 
material formulations through systematic experimentation. For rapid screening of 
new materials, machine learning models predict adsorption performance, and multi-
criteria decision-making considers cost, performance, and environmental impact. 
Green material design and porous adsorbent research benefit from the integrated 
framework (Yao et al., 2024). Finally, optimization strategies, computational modeling, 
machine learning, and decision-making frameworks efficiently, sustainably, and cost-
effectively select green porous oil adsorbents, filling a critical literature gap. Data-



Optimization Strategies and Computational Modeling in The Design and Performance 
Evaluation of Green Porous Oil Adsorbent Materials 

118 

driven, systematic environmental remediation may affect oil spill adsorbent material 
development. Predictive modeling and objective decision-making select oil-polluting 
high-performance materials. 

2. Literature Review  

2.1 Overview of Green Porous Oil Adsorbents 

Popular green porous oil adsorbents purify water safely (Qi et al., 2023). 
Renewable, biodegradable adsorbents outperform synthetic ones. Most green porous 
adsorbents are carbon, polymer, or biomass. Cheap and abundant biomass-based 
adsorbents include agricultural waste, plant fibers, and algae. Activated carbon and 
carbon nanotubes can clean up oil spills due to their high surface area and absorption. 
Flexible and adaptable polymer-based adsorbents made from renewable or 
biodegradable monomers are appealing. Green porous oil adsorbents are evaluated for 
capacity, reuse, and environmental impact. Surface area, pore volume, and functional 
groups affect oil adsorption (Muhammad et al., 2024). Oil spill cleaning supplies must 
be renewable to save money and waste. Sustainability requires biodegradable or 
recyclable sorbents. Many studies have optimised green porous materials' 
performance characteristics to improve adsorption and reduce environmental impact 
(Mahmad et al., 2023; Satyam & Patra, 2024; Syazmin et al., 2023). 

2.2 Quant-based evaluation and modeling 

Quantitative adsorbent material evaluation and modeling fill research gaps. 
Material adsorption is usually described by isotherms and kinetic models. Langmuir 
and Freundlich isotherms describe oil adsorption and equilibrium concentration. The 
Freundlich isotherm assumes heterogeneous sites with different affinities, while the 
Langmuir isotherm assumes monolayer adsorption with constant energy. To estimate 
material adsorption efficiency, this model is tested in several situations. Adsorption 
rate and mechanism are explained by pseudo-first- and pseudo-second-order kinetic 
models. The models optimise oil removal contact time and adsorption dynamics 
(Oliveira et al., 2021; Wang et al., 2023; Wu, 2021). 

Kinetic theories, thermodynamics, and isotherms explain adsorption energy 
changes. Gibbs free energy, enthalpy, and entropy demonstrate adsorption's 
spontaneity, heat exchange, and randomness. Adsorption is exothermic or 
endothermic when enthalpy is positive but spontaneous when Gibbs free energy is 
negative. Adsorption entropy fluctuations indicate system instability. 
Thermodynamics affect adsorption energy efficiency and material performance. Based 
on adsorption capacity, kinetics, and thermodynamics, experimental data and model 
fitting determine the best oil spill cleanup adsorbents (Sharma et al., 2025; Zhang et 
al., 2023). 

2.3 Material Design Engineering Optimization 

Designing high-performance green porous oil adsorbents requires material and 
performance optimization. RSM optimizes experimental conditions and materials. By 
modeling input factors (e.g., synthesis parameters) and output responses (e.g., 
adsorption capacity), researchers can find optimal material preparation conditions 
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using statistical methods (Ababneh & Hameed, 2023; Ortiz-Martí nez et al., 2024). 
Multiple factors are combined for best performance using RSM. Taguchi's optimization 
process meticulously evaluates test design to decrease variability and optimize 
material characteristics. This improves material performance under different 
conditions by increasing robustness and homogeneity. Taguchi, Response Surface 
Methodology (RSM), and Multi-Objective Optimization (MOO) optimize performance. 
MOO helps match cost and performance. ANOVA and regression analyse material 
design and performance. These methods let researchers measure each variable's 
effects and identify the most important material behavior factors. This lets researchers 
improve green porous adsorbents and develop oil spill cleanup materials (Abubakar 
et al., 2024; Apostol et al., 2024; Khalili et al., 2022). 

2.4 Computational Simulation Tools 

Optimization of green porous oil adsorbents is common using modeling and 
simulation. Modeling porous structure fluid flow, adsorption kinetics, and thermal 
effects with COMSOL Multiphysics, ANSYS, and MATLAB is popular. The models 
anticipate realistic adsorbent behavior and large-scale material performance. CFD is 
needed to understand porous oil-water separation (Apostol et al., 2024). Simulating 
oil and water flow via porous materials helps researchers find the best pore size and 
distribution for adsorption. Visualizing flow and pressure gradients with CFD aids 
material design. Monte Carlo and MD simulations can study molecule adsorption. We 
simulate oil molecule-adsorbent adsorption sites, binding energies, and diffusion 
rates. Adsorption mechanisms are studied in MD simulations of atomic-level materials 
(Al-Gethami et al., 2024; J. Zhang et al., 2024). 

2.5 Decision Support with Data and AI 

AI/data-driven decision support revolutionized materials optimization. Input-
based Artificial Neural Networks (ANNs) and Random Forests predict material 
performance. Experimental and simulated data teach the models complex material 
attribute-performance connections. Material optimization uses ANN and Random 
Forests to predict adsorption, reusability, and environmental impact. AI-based 
sensitivity analysis identifies material performance factors. AHP, TOPSIS, and Fuzzy 
Logic are popular Multi-Criteria Decision Making (MCDM) methods for material 
selection based on performance criteria. Analytic Hierarchy Process (AHP) and 
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) rank materials 
on cost, sustainability, and adsorption. Quantifying and assessing materials helps 
researchers draw results objectively. Fuzzy logic aids subjective, uncertain decisions. 
MCDM and AI-based models can examine various parameters to help researchers 
identify the best oil spill restoration materials (Duarte et al., 2024; Sharmila et al., 
2024; Zeng et al., 2025). 

LCA and optimisation evaluate materials' life-cycle environmental impact. 
Researchers use LCA to select high-performing, low-resource, waste, and carbon-
footprint materials. Material sustainability and circular economy are assured. LCA and 
optimization help researchers develop eco-friendly, cost-effective, and efficient oil-
adsorbents. Green porous oil adsorbents are optimized using data, computer, and 
decision-making. Researchers can find the best materials faster, improve application 
qualities, and make data-driven decisions with these tools. This integrated technique 
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could transform material design and reduce environmental pollution by being more 
efficient, sustainable, and cost-effective (Aboelghait et al., 2024; D'Souza et al., 2023; 
Dahlan & Ling, 2021). 

2.6 Traditional Research Gaps 

Empirical experimentation and trial-and-error methods limit green porous oil 
adsorbent practicality. Traditional lab research optimizes hydrophobicity, surface 
area, and pore size. These studies explain baseline performance but ignore oil spill 
conditions like oil type, temperature, salinity, and fluid velocity, which affect 
adsorption efficiency. Engineering decisions often overlook cost-effectiveness, 
reusability, scalability, and sustainability. This fragments adsorbent behavior 
knowledge and complicates operational material selection. 

This multi-phase, data-driven study overcomes these limitations using 
experimental optimization, computational modeling, predictive machine learning, and 
structured decision analysis. In our continuous feedback loop, laboratory results 
inform simulations, simulations improve predictive model accuracy, and machine 
learning outputs directly guide material synthesis and selection. Previous studies 
rarely used COMSOL Multiphysics or ANSYS. This study simulates flows, pressure 
gradients, and adsorption in realistic field conditions, unlike Fluent. Artificial Neural 
Networks and Random Forests trained on experimental and simulated data predict 
performance in various scenarios. The integrated multi-criteria decision-making tools 
AHP and TOPSIS consider technical performance, cost, sustainability, and scalability. 
This research fills gaps in the literature and creates a replicable, scalable method for 
designing and selecting green porous adsorbents by combining these components. It 
improves real-world application and sustainable environmental remediation with 
predictive, transparent, and practical methods. 

3. Research Methodology 

3.1 Research Design 

This study adopts an integrative and multi-disciplinary research methodology. This 
integrative study uses experimental performance data, statistical modeling, machine 
learning algorithms, simulation-based analysis, and engineering decision-making 
tools. An optimized, predictive, and decision-support framework for green porous oil 
adsorbent material selection is needed. The research process begins with recent green 
adsorbent material experiments. The data support statistical modeling with 
adsorption isotherms and kinetic equations. RSM optimizes material preparation. 
These models use COMSOL Multiphysics and ANSYS Fluent to simulate real-time 
adsorption and fluid flow in porous matrices. Next, ANN and RF predictive analytics 
train material performance models using structural features. Finally, AHP, TOPSIS, and 
fuzzy logic choose the best, most sustainable adsorbents. A holistic approach guides 
theoretical research and material development (Dahlan & Ling, 2021). 

3.2 Data Collection 

The first phase of this research collects green porous oil adsorbent physical, 
chemical, and adsorption data. Between 2018 and 2024, 50 peer-reviewed articles 
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used in this study. Chitosan, cellulose, lignin, plant-based activated carbon, alginate 
composites, biochar. Normalization and standard measurement units ensured dataset 
compatibility across studies. Key performance indicator-based descriptions 
accompany material entries. Before performance degradation, consider adsorption 
capacity, surface area, pore diameter, volume, oil-water contact time, hydrophobicity 
index, and regeneration cycles. Also recorded were oil type (crude, diesel, motor), 
adsorption conditions, and surface modification methods. Estimating incomplete data 
required structurally similar material mean substitution or linear interpolation. This 
dataset underpins comparative modeling and computational analysis broadly but 
consistently. 

3.3 Statistical Modeling 

Models included equilibrium isotherms, kinetic equations, and multivariate 
regression for material properties and adsorption. Adsorption equilibrium was 
modeled using Langmuir and Freundlich isotherms. Langmuir model parameters like 
q_max and K_L indicate monolayer adsorption affinity over a homogeneous surface. 
The empirical Freundlich model for heterogeneous surfaces explains multilayer 
adsorption with K_F and n. Kinetic behavior was assessed using equilibrium, pseudo-
first-order, and pseudo-second-order models. These models differentiate 
physisorption from chemisorption. R², RMSE, and χ² were used to verify model 
accuracy after fitting regression analysis to empirical data. Comparative model 
analysis revealed each material category's dominant adsorption mechanism. 

Beyond equilibrium and kinetics, multivariate regression and ANOVA were used to 
determine how activation temperature, chemical treatment method, pH level, and 
precursor material affected adsorption capacity and recyclability. Variable significance 
was determined by ANOVA hypothesis testing. RSM determined optimal prep. Few 
experimental runs modeled nonlinear variable interactions with the Box-Behnken 
design. Second-order polynomial equations resulted from activation temperature, 
contact time, pH, and adsorption capacity. Interface effects and optimal synthesis 
configurations were shown by 3D surface plots. 

3.4 Modeling and Simulation COMSOL 

Multiphysics and ANSYS Fluent demonstrated porous adsorbent transport and 
simulated performance. For porous structures, COMSOL multiphysics modules 
simulated coupled mass and fluid transport. This phase used Navier–Stokes equations 
for incompressible laminar flow and Fick's second law of diffusion to model oil 
molecule movement through pores. Using average material structure data (pore size 
100–300 nm, porosity 0.45–0.70, tortuosity factor 1.2–2.5), a custom geometry was 
created. An oil-water-submerged cylindrical porous domain was modeled as the 
adsorbent. Source contact angles and fitted adsorption isotherms set boundary 
conditions. Simulations examined how material structure affects time-dependent 
adsorption and saturation at different flow velocities and temperatures. CFD 
parallelization with ANSYS Fluent. Oil droplet movement with adsorbent particles was 
simulated using Volume of Fluid.  

3.5 Machine Learning and Predictive Analytics 

Because adsorbent materials are highly dimensional and nonlinear, ML models 



Optimization Strategies and Computational Modeling in The Design and Performance 
Evaluation of Green Porous Oil Adsorbent Materials 

122 

predicted adsorption performance and guided virtual material screening. We chose 
ANN and RF because they can capture complex feature interactions and generalize 
across unseen data. This study used ANN and RF to model complex, nonlinear 
relationships between structural and environmental variables and adsorption 
performance metrics. ANN was chosen for its flexibility in learning complex patterns 
and dependencies, especially when pore size, surface area, and synthesis temperature 
interact. Overfitting resistance, interpretability, and built-in feature importance help 
identify key input parameters, so RF was chosen. Initial testing showed SVM and 
XGBoost performed poorly in this dataset. SVM struggled to scale and tune complexity 
for high-dimensional data, while XGBoost worked but required hyperparameter 
optimization and had a higher cross-validation RMSE. In comparison, ANN had the 
highest R² and lowest RMSE, while RF balanced accuracy, interpretability, and training 
efficiency. Results supported this study's ANN/RF predictive analytics model. The 
machine learning pipeline started with dataset normalization, missing value 
imputation, and feature encoding. Data were divided into training (70%), validation 
(15%), and testing (15%). Surface area, pore diameter, hydrophobicity index, chemical 
modification type, precursor material, and environment were inputs. Standard 
adsorption capacity was output.  

3.6 Variable Definitions and conceptual framework 

Independent variables (input parameters), dependent variables (performance 
outputs), and moderating or decision-making variables in multi-criteria evaluation 
frameworks are examined in this study. Each variable category is important for 
modeling, optimization, and material selection. Material-specific characteristics, 
synthesis conditions, and environmental operating parameters may affect green 
porous oil adsorbent material performance. The BET surface area (m²/g) is a crucial 
factor in determining the total oil adsorption surface available for nitrogen gas 
adsorption. It depends on the adsorbent's oil-molecule interaction. The average 
adsorbent matrix internal pore size, measured in nanometers (nm), affects oil 
molecule diffusion. Pore volume (cm³/g) measures the adsorbent's internal void space 
and oil retention capacity.  

Adsorbent materials—its origin and composition—are also important. Carbon, 
composite, and biomass-derived adsorbents like cellulose, chitosan, and lignin are 
examples. Chemical or physical surface functionalization increases these materials' oil 
affinity by increasing hydrophobicity or oleophilicity and surface energy. Our 
hydrophobicity index measures water repulsion, essential for oil-water separation. 
Key operational parameters include contact time (the number of minutes the oil 
touches the adsorbent) and synthesis temperature (which affects porosity and surface 
chemistry). Solution pH affects adsorbent surface charge and oil droplet interaction. 
Because heavier oils with higher viscosity adsorb differently than lighter 
hydrocarbons, oil type and viscosity (cp) are considered.  

Performance output metrics, or dependent variables, measure adsorbent 
effectiveness. This is most important, measured in mg/g or kg/kg of oil per gram of 
adsorbent, which indicates how well the material captures oil pollutants. In kinetic 
modeling, the adsorption rate constant (k₁ or k₂) from pseudo-first- or pseudo-
second-order models indicates adsorption speed and physical/chemical dominance. 
The material's regeneration efficiency, expressed as a percentage, shows its adsorption 
capacity after multiple use and recovery cycles. The removal efficiency, expressed as a 
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percentage, measures oil removal from the water phase during a controlled trial to 
evaluate performance. Time-sensitive environmental remediation applications 
require the saturation time, measured in minutes, to determine the adsorbent's 
maximum oil uptake capacity. 

Moderating or decision-making variables are added to technical performance 
variables for multi-criteria material selection. Laboratory performance and practical 
applicability depend on these variables. Economic viability of mass production 
depends on USD/kg synthesis cost. The environmental sustainability score measures 
the adsorbent's lifetime ecological impact based on biodegradability, LCA, and toxicity 
data. Expert judgment or technology readiness determines the material's industrial 
scalability index. The reusability index shows how many cycles the adsorbent can 
withstand before its performance drops below an acceptable threshold, indicating its 
long-term value. Multi-objective optimization scores from the Analytic Hierarchy 
Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) rank the variables to help choose the most effective and sustainable 
adsorbent materials. The conceptual framework is mentioned in figure 1. 

Table 1: Material Selection Criteria and Quality Control 
Criteria Type Description 
Inclusion Studies published between 2018 and 2024 
Inclusion Use of green porous adsorbent materials with quantifiable performance data 
Inclusion Reports containing data on BET surface area, pore size, and adsorption capacity 
Exclusion Studies lacking quantitative metrics or using non-porous materials 
Exclusion Non-peer-reviewed literature and conference abstracts 
Exclusion Incomplete datasets with missing structural or performance descriptors 

Phase 1: Data Collection/Preprocessing 

Material, synthesis, and environmental data are compiled, cleaned, and analyzed 
using statistical validation and imputation. 

Phase 2: Statistical Model 

Adsorption is modeled by isotherm and kinetic equations, and RSM optimizes 
synthesis. 

Phase 3: Simulation Computation 

COMSOL and ANSYS simulate porous material oil flow, adsorption dynamics, and 
structural performance. 

Phase 4: Predictive Machine Learning 

Structured data-based ANN and Random Forest models predict adsorption capacity 
and performance drivers. 

Phase 5: Multi-criteria decision-making 

AHP, TOPSIS, and fuzzy logic rank materials by technical, environmental, and 
economic criteria. 

Phase 6: Validation and Recommendation 

Practical adsorbent materials are selected by validation against experimental data 
and sensitivity analysis. 
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Figure 1: Conceptual Research Framework 

4. Data Analysis 

4.1 Adsorption Isotherm Modeling and Kinetics 

Multiple quantitative methods are used to evaluate, optimize, and predict green 
porous oil adsorbent materials in this study. A large dataset from experimental studies 
and literature is used to understand how structural and synthesis parameters affect 
adsorption behavior, develop predictive models for adsorption capacity, simulate real-
world performance using computational tools, and guide material selection using a 
structured decision-making framework. Langmuir and Freundlich isotherms and 
pseudo-first and pseudo-second-order kinetics are used to determine the adsorption 
properties of selected materials. ANOVA and regression determine the statistical 
significance of input variables like surface area, pore size, and synthesis conditions. 
Response Surface Methodology (RSM) optimises these parameters to find the best oil 
uptake conditions. Adsorption in porous structures is modeled using COMSOL 
Multiphysics and ANSYS Fluent CFD and FEA. Artificial Neural Networks (ANN) and 
Random Forest (RF) algorithms predict adsorption performance for high-throughput 
virtual candidate screening using material descriptors. Finally, AHP and TOPSIS rank 
material alternatives by technical, environmental, and economic criteria. These 
analyses optimize and select green oil spill adsorbents in multiple dimensions. 

Table 2 lists 15 green porous adsorbents with structural, chemical, and synthesis 
differences that affect oil adsorption. Performance features like BET surface area, pore 
diameter, pore volume, functionalization method, synthesis process, contact time, and 
working pH range are in the dataset. These traits underpin statistical modeling, 
optimization, simulation, and predictive analytics in the study. While BET has a surface 
area of 299-972 m²/g, materials like Activated Carbon (M2) and Biochar (M5) have 
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higher surface areas (861-972 m²/g). High-surface-area materials should increase oil 
molecule interaction sites, improving adsorption. Microporous and mesoporous 
structures have 2.02–5.26 nm pores. M4, M8, M13 materials with pore diameters of 
3.5–4.5 nm balance diffusion rate and oil molecule size compatibility, making them 
ideal for oil adsorption. Pore volume values range from 0.21 to 0.99 cm³/g, with higher 
values indicating more void space and adsorption potential. Alginate-based M3 is ideal 
for large-scale water treatment adsorption due to its high surface area (863 m²/g) and 
pore volume (0.95 cm³/g). 

Table 2: Physical and Chemical Properties of Green Porous Adsorbent Materials 
Material 

ID 
Material  

Type 
BET Surface 

Area  
(mÂ²/g) 

Pore 
Diameter 

(nm) 

Pore  
Volume 

(cmÂ³/g) 

Functionaliza
tion 

Synthesis 
Method 

Contact 
Time  
(min) 

pH 
Range 

M1 Composite 572 4.14 0.56 Ester Microwave 58 7.4 
M2 Activated 

Carbon 
299 2.02 0.21 Ester Steam 

Activation 
44 7.6 

M3 Alginate 863 2.08 0.95 Ester Thermal 74 7.2 
M4 Composite 330 3.84 0.65 Carboxyl Microwave 30 7.9 
M5 Biochar 861 3.4 0.51 None Sol-Gel 54 7.3 
M6 Starch-

Based 
508 2.16 0.21 Ester Sol-Gel 36 7.8 

M7 Alginate 969 5.41 0.38 Silane Chemical 38 7.7 
M8 Alginate 543 2.81 0.39 Carboxyl Sol-Gel 53 6.9 
M9 Composite 691 2.32 0.75 Carboxyl Chemical 30 6.2 

M10 Cellulose 613 4.16 0.69 None Thermal 73 6.7 
M11 Biochar 585 3.34 0.87 Carboxyl Steam 

Activation 
37 7.3 

M12 Composite 391 5.44 0.34 Carboxyl Steam 
Activation 

53 7.3 

M13 Biochar 476 3.63 0.51 Ester Steam 
Activation 

40 7.2 

M14 Biochar 360 5.01 0.35 None Sol-Gel 80 6.5 
M15 Starch-

Based 
659 4.38 0.8 Ester Thermal 46 7.1 

The dataset has Amine, Carboxyl, Phosphate, Ester, Silane, and None surface 
functionalization. Amine or phosphate modifications (M6, M10) increase 
hydrophobicity and oil affinity, improving oil-water separation. Selectivity and 
adsorption kinetics may be affected by unmodified M5 and M12. Thermal, chemical, 
pyrolysis, steam activation, sol-gel, microwave synthesis occur. Steam activation and 
microwave treatment (M2, M4, M8) increase porosity and surface area due to rapid 
energy input and gas release. These methods enhance carbon-based and composite 
adsorbent structures. Most materials' contact time is 50–70 minutes, but it can be 30–
89. High surface reactivity may accelerate adsorption kinetics with shorter contact 
times like M4 (30 min). Since the pH range (6.0–7.9) is close to neutral, the adsorbents 
are stable and functional under normal water conditions, which is important for oil 
spill and wastewater remediation. 

Using the compiled dataset and a Random Forest machine learning model, a feature 
importance analysis identified the most important factors affecting green porous oil 
adsorption performance. The model evaluated input variables' adsorption capacity 
predictions. BET surface area mattered most in Figure 2, indicating its strong 
correlation with adsorption efficiency. Higher surface areas increase oil uptake 
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because more oil interaction sites exist. Pore diameter and volume also affected oil 
molecule diffusion and retention, highlighting internal structure. Operating 
parameters like contact time were also important, suggesting that adequate exposure 
time maximizes adsorption. However, material type, synthesis method, and pH range 
had less effect on model prediction. These factors affect adsorption differently 
depending on material formulation. The feature importance results support 
experimental findings and provide a data-driven basis for variable prioritization in 
future material design and optimization strategies. 

 
Figure 2: Feature Importance Ranking from Machine Learning Model for Predicting 

Adsorption Capacity 

Table 3 shows isotherm and kinetic parameters for ten green porous oil adsorbents. 
Adsorption behavior was analyzed using Langmuir and Freundlich isotherms, and 
kinetics were evaluated using pseudo-first- and pseudo-second-order models. 
Adsorption mechanisms and oil uptake rate are explained by these models. The 
Langmuir model predicts 110–160 mg/g monolayer adsorption capacity (q_max) for 
the selected materials. M5 and M9 had the highest q_max values (160 and 150 mg/g), 
indicating oil removal potential. The higher Langmuir constant (K_L) values of M5 and 
M8 indicate stronger adsorbate-adsorbent interactions. Freundlich constants (K_F and 
n) measured surface heterogeneity. M6 and M10 had better Freundlich fits, suggesting 
multilayer adsorption or uneven energy distribution on the adsorbent. R² values 
indicate the Langmuir model is most applicable to most materials, confirming 
monolayer adsorption to be common. The higher pseudo-second-order rate constants 
(k₂) in high-performing materials indicate that chemisorption is the rate-limiting step. 
M5 and M9 were ideal for practical applications due to their strong isotherm 
performance and fast adsorption rates. 
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Table 3: Isotherm and Kinetic Modeling Parameters for Selected Adsorbent Materials 
 Langmuir 

q_max (mg/g) 
Langmuir 

K_L (L/mg) 
Freundlich K_F 

(mg/g) 
(L/mg)^1/n 

Freundlic
h n 

Pseudo-
1st kâ, 

(1/min) 

Pseudo-2nd 
kâ‚‚ 

(g/mgÂ·min) 

RÂ² 
Isotherm 
(Best Fit) 

M2 140 0.025 25 2.1 0.012 0.0011 Langmuir 
M3 120 0.03 20 1.9 0.01 0.0013 Langmuir 
M4 135 0.018 22 2.2 0.015 0.001 Freundlich 
M5 160 0.04 30 2.5 0.02 0.0016 Langmuir 
M6 125 0.022 18 1.8 0.011 0.0012 Freundlich 
M7 110 0.015 19 1.7 0.009 0.001 Freundlich 
M8 145 0.028 27 2.3 0.018 0.0015 Langmuir 
M9 138 0.035 26 2 0.016 0.0014 Langmuir 

M10 150 0.032 28 2.4 0.017 0.0017 Langmuir 
M11 130 0.027 24 2.1 0.013 0.0013 Freundlich 

In Figure 3, Langmuir and Freundlich isotherm models are fitted to experimental 
equilibrium adsorption data for a green porous adsorbent. Oil adsorption capacity and 
equilibrium concentration are related in experiments, validating the model. The 
Langmuir isotherm fits data well across concentrations and has a small residual error 
margin. Based on this model, monolayer adsorption on a homogeneous surface with 
finite, energetically equivalent sites dominates the process. The Freundlich model 
deviates, especially at mid-to-high equilibrium concentrations, indicating it cannot 
describe this material's adsorption behavior under tested conditions. The Langmuir 
model's superior predictive performance is supported by the shaded confidence bands 
around both model curves, which show fit uncertainty and robustness. Table 2 shows 
that Langmuir-type adsorption dominates in this system, as indicated by high R² 
values. Validating simulation assumptions and guiding surface interaction and 
capacity limit optimization require this knowledge. 

 
Figure 3: Adsorption Model Fit Comparison for Langmuir, Freundlich, and Kinetic 

Models 

4.2 Statistical Analysis and ANOVA of Process Parameters 

In Table 4, a comprehensive ANOVA and regression analysis shows the statistical 
significance and quantitative effect of key material and synthesis parameters on green 
porous oil adsorbents' adsorption capacity Each predictor has F-values, p-values, DF, 
SS, MS, and model fit metrics. Significant p-values (< 0.01) and strong F-values (30.04, 
27.18, and 21.97) indicate BET surface area, pore diameter, and pore volume as the 
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most influential variables. These structural properties directly affect oil adsorption by 
increasing surface interaction and diffusion space, making them crucial to adsorbent 
design. Synthesis temperature, pH range, and contact time had significant (p < 0.05) 
but moderate effects due to lower F-values. The negative regression coefficient for pH 
suggests that surface charge or oil solubility changes may reduce adsorption efficiency 
in alkaline conditions. Positive contact time confirmed oil–adsorbent interaction 
duration's importance. Low residual sum of squares supported the model's 
explanation. The model's Adjusted R² value of 0.87 reveals that the six predictors 
account for 87% of adsorption capacity variation. A p-value < 0.00001 indicates 
statistical significance in the regression model. These findings support including 
surface and pore structure in this study's optimization (RSM), simulation, and machine 
learning phases because they affect adsorption performance. 

Table 4: ANOVA and Regression Output for Factor Influence on Adsorption Capacity 
Variable Degrees of  

Freedom (DF) 
Sum of 

Squares (SS) 
Mean 

Square (MS) 
F-

Value 
p- 

Value 
Significance 

BET Surface Area 1 82.3 82.3 30.04 0.0001 *** 
Pore Diameter 1 74.5 74.5 27.18 0.0003 *** 
Pore Volume 1 60.2 60.2 21.97 0.0025 ** 

Synthesis Temperature 1 28.5 28.5 10.4 0.02 * 
pH Range 1 32.7 32.7 11.93 0.012 * 

Contact Time 1 30.1 30.1 10.99 0.014 * 
Residual 43 118 2.74    

Model Summary < 0.00001  
Adjusted R2 0.87  

 

Three-dimensional response surface plots show how synthesis temperature and 
contact time affect green porous oil adsorbents' adsorption capacity in Figure 4. The 
surface adsorption capacity increases nonlinearly until optimal synthesis temperature 
(65-75°C) and contact time (60-75 minutes), after which performance plateaus or 
declines. The curved surface suggests optimizing these two variables synergistically. 
The Response Surface Methodology (RSM) plot shows the optimal operating window 
for adsorption efficiency, reducing experimental trials and guiding material synthesis 
process parameter selection. The visualization shows process behavior and aids data-
driven synthesis protocol refinement. 

 
Figure 4: Response Surface Plot of Adsorption Capacity as a Function of Synthesis 

Temperature and Contact Time 
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Table 5 shows the Response Surface Methodology experimental design matrix and 
optimization results. The table shows how pH, synthesis temperature, and contact 
time affect green porous oil adsorption. Central Composite Design (CCD) examines 
linear, quadratic, and interaction input-response effects. Adsorption capacities ranged 
from 132.5 mg/g to 151.7 mg/g in the ten experiments, indicating process sensitivity. 
Run 3, pH 7.0, 200°C, 75 minutes, had the highest capacity (151.7 mg/g). This suggests 
neutral pH, moderate-high temperature, and long interaction time optimize 
adsorption. The RSM model predicts capacities that match experimental data with 
residuals from –0.7 to +1.8 mg/g. This low deviation confirms the RSM-derived 
quadratic polynomial equation's predictive power and model fit. Run 8 (pH 6.5, 225°C, 
75 min) also had high observed and predicted capacities, confirming that optimal 
adsorption occurs within a narrow process window where all three variables work 
synergistically. These results show that RSM optimizes green porous oil adsorbent 
preparation. Performance prediction and scale-up design computational modeling and 
simulation will use this table. 

Table 5: Experimental Design Matrix and Optimization Results 
b pH Synthesis 

Temp (Â°C) 
Contact 

Time (min) 
Observed Capacity 

(mg/g) 
Predicted Capacity 

(mg/g) 
Residual  

(Obs - Pred) 
1 6.00 150 45 132.5 131 1.50 
2 6.50 175 60 140.2 139 1.20 
3 7.00 200 75 151.7 150 1.70 
4 6.00 225 60 145.3 146 -0.70 
5 7.00 250 60 142.8 141 1.80 
6 6.50 200 45 148.1 147 1.10 
7 6.00 175 75 138.9 139.5 -0.60 
8 6.50 225 75 149.6 150.2 -0.60 
9 7.00 175 45 137.2 136 1.20 

10 6.50 250 60 144.7 143.8 0.90 

Figure 5 shows a CFD-modeled oil-water flow metaphor through a porous green 
adsorbent. System functional zones are inlet, porous medium, and outlet.  

 
Figure 5: CFD Simulation of Oil-Water Flow through Porous Adsorbent Structure 
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Blue streamlines use Navier–Stokes equations to simulate laminar or turbulent 
velocity vectors as mixed-phase flow approaches the adsorbent structure. Red 
droplets show oil particles interacting with the central green-shaded porous medium's 
internal pore network. This site absorbs oil via capillary action, surface affinity, and 
physical entrapment. The outlet has green streamlines when cleaner water flows 
through, indicating oil removal. The model shows flow disruption and adsorption 
efficiency depend on pore connectivity, surface chemistry, and hydrophobicity. Scaling 
lab-scale tests to field-ready remediation systems requires CFD platforms like ANSYS 
Fluent to quantify velocity gradients, pressure drop, residence time, and mass transfer 
coefficients. This simulation supports experimental findings and demonstrates the 
functional logic of green porous adsorbent design and performance under dynamic 
flow conditions. 

4.3 Predictive Modeling and Sensitivity Analysis 

Table 6 compares the performance of three machine learning (ML) models—ANN, 
RF, and LR—used to predict green porous oil adsorption capacity based on multiple 
material and process descriptors. The models were assessed using R², RMSE, MAE, and 
training time as performance metrics. To select models, qualitative overfitting risk and 
interpretability assessments were used. With a training R² of 0.95 and a testing R² of 
0.91, the ANN model showed strong generalization and minimal overfitting. Its lowest 
RMSE (3.5 mg/g) and MAE (2.6 mg/g) showed its ability to capture nonlinear surface 
area, pore size, and synthesis parameter relationships. Due to its “black-box” structure, 
ANN took 12.5 seconds to train and was less interpretable. The Random Forest model 
performed well, with a R² of 0.89 and acceptable error metrics (RMSE = 4.1 mg/g, MAE 
= 3.0 mg/g). It is less computationally intensive than ANN and balances accuracy and 
interpretability. Feature importance ranking aids material screening and sensitivity 
analysis. While linear regression is the fastest and most interpretable method (0.4 
seconds), it has lower predictive accuracy (R² = 0.78, RMSE = 6.7 mg/g). This implies 
that a linear model cannot represent the dataset's nonlinear relationships. For high-
accuracy prediction tasks in research and optimization, we recommend the ANN 
model. Practical implementation or preliminary screening can benefit from Random 
Forest's performance, interpretability, and computational efficiency. 

Table 6: Model Performance Metrics for Machine Learning Algorithms Predicting 
Adsorption Capacity 

Model Training 
RÂ² 

Testing 
RÂ² 

RMSE 
(mg/g) 

MAE 
(mg/g) 

Training 
Time (sec) 

Overfitting 
Risk 

Interpreta
bility 

Artificial Neural 
Network (ANN) 

0.95 0.91 3.5 2.6 12.5 Low Low 

Random Forest (RF) 0.93 0.89 4.1 3 2.1 Moderate Moderate 
Linear Regression (LR) 0.82 0.78 6.7 5.1 0.4 Low High 

The heatmap sensitivity analysis of decision-making criteria weighting on green 
porous oil adsorbent material ranking scores is shown in Figure 6. The relative 
importance of each criterion in multi-criteria decision-making (MCDM) frameworks 
like AHP or TOPSIS can greatly affect material selection.  Assessing adsorption 
efficiency, cost, reusability, sustainability, and scalability. The base case, Scenario A, 
and Scenario B were assessed for different decision-making assumptions or priorities 
(e.g., economic vs. environmental). Adsorption efficiency dominates selection in all 
scenarios (0.90–0.95), according to the heatmap. Reusability and sustainability have 
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stable scores with minor fluctuations, suggesting they support material ranking and 
are less sensitive to weighting changes. Cost sensitively drops from 0.70 base case to 
0.63 Scenario B. If cost is deprioritized, high-performing but expensive materials may 
rank higher. Scalability is less influential than efficiency but slightly increases under 
adjusted weightings, suggesting its relevance in long-term or industrial deployment. 
This analysis shows that while efficiency is the most stable and influential criterion, 
decision-makers should consider how subjective weights (especially cost and 
sustainability) may affect material selection. Clarity in the heatmap aids material 
evaluation and sensitivity pattern identification. 

 
Figure 6: Sensitivity Analysis of Decision Criteria on Final Material Rankings 

Figure 7 ranks selected green porous oil adsorbent materials using AHP and 
TOPSIS. Adsorption efficiency, cost, reusability, sustainability, and scalability 
determined material selection. Material scores are based on quantitative performance 
data and expert judgment. Horizontal bar charts show declining selection scores. 
Material 3 (0.91) had the best technical, economic, and environmental balance. 
Material 5 (0.88) and Material 8 (0.85) had strong environmental profiles and high 
adsorption capacity. These materials are best for oil spill remediation design and 
deployment. Material 4 and Material 2 scored the lowest (0.67 and 0.76, respectively), 
suggesting high cost, low reusability, or limited scalability. All materials had moderate 
scores (0.67 to 0.91) indicating meaningful performance differentiation and 
supporting multi-criteria decision-making. The chart's color gradient helps 
stakeholders choose adsorbents quickly. This ranking is robust, transparent, and 
reproducible for selecting the best oil adsorption material(s) using complex and 
sometimes conflicting criteria. 
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Figure 7: Final Material Selection Rankings Based on AHP and TOPSIS Decision-Support 

Models 

Material 3, Material 5, and Material 8 deviate from the average score across five key 
decision criteria: efficiency, cost, reusability, sustainability, and scalability, as shown in 
Figure 8. This visualization shows each material's performance and deviation, 
enabling more nuanced trade-off and strength analysis in the multi-criteria decision 
framework. Most categories, especially efficiency (+0.05) and reusability (+0.04), favor 
Material 3. This matches its top AHP-TOPSIS ranking, proving technical excellence. 
Material 5 has positive deviations in similar categories, but less so, indicating strong 
but balanced performance. Material 8 performs moderately, nearly average in most 
areas but slightly below average in cost and sustainability, suggesting economic and 
environmental improvement. Above- and below-average results are easy to spot 
because the center line at zero shows the average performance per criterion. The chart 
helps decision-makers find top candidate performance differentiators. This 
visualization shows that Material 3 performs well overall and Material 5 is efficient but 
cheaper. Reusability may outweigh cost with Material 8. Comparative analysis helps 
multi-objective, evidence-based material selection. 

 
Figure 8: Comparative Radar Plot of Top 3 Ranked Materials 
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Figure 9's bar chart shows four sample adsorbent materials' adsorption capacities 
with 95% confidence intervals to demonstrate measurement variability and reliability. 
Error bars aid sample comparisons with statistical precision. Sample B had the highest 
adsorption capacity, followed by Sample D, with narrow confidence ranges indicating 
replicate consistency. Sample C was the least capable and most variable, suggesting 
experimental inconsistency or environmental or structural parameter sensitivity. We 
need confidence intervals to validate model predictions and evaluate material 
adsorption robustness. This figure provides a statistical framework for selecting high-
performing and stable green porous adsorbent materials for oil spill remediation 
optimization and deployment, supporting the experimental results. 

 
Figure 9: Adsorption Capacity with 95% Confidence Intervals 

ANOVA results on pH and temperature effects on green porous oil adsorbents are 
shown in Table 7. Significant effects (p < 0.001) of pH and temperature on adsorption 
capacity demonstrate their impact on the process. The interaction term (pH × 
Temperature) has a significant effect (p = 0.002), indicating that one factor affects the 
other. This interaction suggests pH and temperature work synergistically. A pH and 
temperature can optimize adsorption. This favors multi-variable optimization over 
parameter tuning. The significant interaction highlights the need to use Response 
Surface Methodology (RSM) to determine optimal synthesis and operational 
conditions in the study. 

Table 7: ANOVA Interaction Effects Table 
Source Sum of Squares df Mean Square F-value p-value 

pH 150.2 2 75.1 33.5 <0.001 
Temperature 180.5 2 90.25 40.3 <0.001 

pH Ã— Temperature 95.8 4 23.95 10.7 0.002 
Error 40.3 18 2.24 - - 

Figure 10 compositely displays COMSOL Multiphysics simulation outputs for oil-
water flow through a porous green adsorbent medium. The flow velocity plot (top left) 
shows streamline vectors and pore geometry-influenced fluid direction and velocity 
gradients. Oil concentrations are higher near the inlet in the oil concentration map (top 
right), confirming early-stage adsorption. Pressure gradient plot (middle left) shows a 
large medium pressure drop, correlated with flow resistance. The saturation map 
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(middle right) shows pore fluid occupancy, predicting breakthrough time. The bottom 
left mesh view shows a refined triangular mesh that numerically resolves gradients in 
narrow pore regions. The geometry view (bottom right) shows the simulation domain. 
These outputs confirm the fluid transport and adsorption mechanisms modeled, 
providing quantitative porous structure behavior insight for upscaling and 
optimization. 

 
Figure 10: Composite COMSOL Multiphysics Outputs: Flow Velocity, Oil Concentration, 

Pressure, Saturation, Mesh, and Geometry Visualizations 

5. Discussion 

Machine learning added powerful prediction and pattern recognition to improve 
material performance trend interpretation across a diverse dataset of porous 
adsorbents. Artificial neural networks and random forest models trained on BET 
surface area, pore size, surface functionalization, and synthesis conditions showed 
high predictive accuracy (R² > 0.90, low RMSE and MAE scores). These models 
accurately predicted adsorption capacity and found nonlinear dependencies and 
variable interactions that statistical methods missed. Feature importance analysis 
confirmed and extended RSM and simulation findings that pore diameter, surface area, 
and hydrophobicity index most affected adsorption. Predictive analytics screened new 
material formulations without extensive experimental testing, speeding up 
development. Machine learning models provided accurate predictions to multi-criteria 
evaluation frameworks for data-driven and context-sensitive performance estimates 
from experimental data to decision-support systems. 

Finally, a robust decision-support framework using Analytic Hierarchy Process 
(AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was 
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used to objectively rank and select the best adsorbent materials from a pool of 
candidates. This phase synthesized the modeling pipeline using AHP pairwise 
comparison and TOPSIS scoring to weight adsorption efficiency, cost, reusability, 
environmental sustainability, and scalability. As expected, simulation and machine 
learning-performing materials were ranked first. Transparent and well-justified 
weight assignment is crucial because decision model sensitivity analysis showed that 
small weight allocation changes could affect final rankings, especially for materials 
with similar performance profiles. A diverging bar chart showed material deviations 
from the mean score, making it easier to identify cross-criteria winners and losers. 
Expert judgment and quantitative modeling output ensured material selection was 
technically optimal and aligned with operational and sustainability goals in the 
decision-support layer (Dahlan & Ling, 2021).  

Critique of existing literature strengthens this integrated approach. Most studies on 
porous oil adsorbents use empirical testing without predictive models or optimization 
frameworks, limiting generalizability and slowing design cycles. In contrast, RSM, CFD 
simulations, machine learning, and AHP-TOPSIS ranking form a synergistic loop that 
improves material performance and decision-making. Some single-variable testing 
studies found high adsorption capacities, but they did not address how synthesis or 
operating parameters affected scalability or cost-effectiveness. In contrast, surface 
response modeling and predictive simulation showed the relationship between 
synthesis conditions and performance metrics and identified optimal trade-offs 
between competing objectives. Modelling revealed design pathways that traditional 
experimental studies would miss, such as the fact that moderate surface area and 
tailored wettability could outperform materials with extreme values in one variable 
but suboptimal configurations in another (D'Souza et al., 2023). 

The machine learning and simulation-driven approach also solved the field's 
biggest issue: experimental results' field inapplicability. Simulations of adsorption 
under dynamic flow conditions using realistic geometries and validated physics 
models revealed performance degradation, flow channeling, and structural collapse, 
which are usually only seen during scale-up or deployment. Simulations were used 
early in the design phase to ensure that selected materials would perform well in labs 
and be efficient in practice. Synthetic simulation data improved machine learning 
models' generalization in predictive validation (Duarte et al., 2024). 

The findings were strengthened by decision-support framework sensitivity 
analysis. Efficiency and reusability were the most heavily weighted criteria, but even 
small changes in cost or scalability weights could significantly change material 
rankings, especially among closely scored candidates. Transparent decision modeling 
and stakeholder-driven customization in material selection are crucial. Budget-
constrained organizations may choose a slightly lower-performing material with a 
much lower synthesis cost, while environmentally driven initiatives may prioritize 
sustainability over capacity gains. Radar plots, diverging bar charts, and matrix 
heatmaps showed statistical inference, machine learning predictions, simulation 
outputs, and decision-support outcomes were consistent, proving the multi-phase 
evaluation pipeline's reliability (Sharmila et al., 2024). 

This multi-modal analysis provides a repeatable, comprehensive method for 
optimizing and selecting green porous adsorbent materials beyond lab trials. The 
structured pipeline can be replicated for other material systems with complex 



Optimization Strategies and Computational Modeling in The Design and Performance 
Evaluation of Green Porous Oil Adsorbent Materials 

136 

structure, synthesis, and operating environment interactions. It includes statistical 
model development, simulation-enhanced validation, machine learning prediction, 
and multi-criteria material ranking. This framework accelerates high-performance 
material discovery and incorporates resilience and adaptability into selection by 
accounting for variability, uncertainty, and operational constraints. It is a 
breakthrough in data-driven materials engineering for environmental applications, 
which can guide experiments, lower development costs, and improve and scale oil 
pollution remediation solutions. 

Simulation models show flow dynamics and adsorption, but they limit real-world 
applications. Natural complexity may not be captured by idealized pore geometry, 
uniform flow, and constant temperature or pressure. Surface fouling, biofilm 
formation, and oil compositional variability are difficult to model in CFD. Material 
heterogeneity and irregular scaling affect field performance. Experimental validation 
and pilot-scale testing are needed for real-world remediation efficacy and reliability, 
while simulations guide design and optimization. 

6. Conclusion and Future Work 

Experimental optimization, computational simulation, machine learning, and 
decision-making frameworks improved green porous oil adsorbent material design, 
selection, and evaluation. Adsorption efficiency was improved by optimizing pore size, 
surface area, synthesis temperature, and hydrophobicity using RSM and Taguchi 
methods. RSM optimized experimental conditions and mapped complex material 
characteristics-performance relationships. After conventional trial-and-error 
methods failed to identify non-linear interactions, careful control of these factors 
produced superior adsorption materials. Statistical modeling optimized materials and 
showed how minor synthesis parameter changes affected performance, improving 
design. 

The findings were improved by COMSOL and ANSYS Fluent simulations of porous 
media flow and adsorption. Geometry, pore size, and structural variations affected 
dynamic oil adsorption efficiency in these simulations. Unlike lab static adsorption 
experiments, simulations included fluid dynamics, pressure gradients, and multi-
phase interactions. This computational method improved material performance 
understanding in large-scale environments with important pore network connectivity 
and oil-water flow interactions. Using experimental and simulation data to validate 
machine learning models improved material performance prediction. Random forests 
and artificial neural networks predicted adsorption capacities better than material-
based models. 

Materials were ranked by cost, efficiency, reusability, sustainability, and scalability 
using experimental and simulation-based improvements and multi-criteria decision-
making methods like AHP and TOPSIS. This decision-support framework made 
material selection transparent and reproducible by objectively comparing materials. 
Technical performance, environmental, and economic factors were considered in 
material choice by AHP experts and TOPSIS quantitative scoring. The decision-making 
framework's sensitivity analysis showed that even small changes in criterion weights 
could significantly change material rankings, emphasizing the importance of justifying 
these weightings during material selection. Performance metrics and sustainability 
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goals aligned material selection with real-world applications and long-term 
sustainability goals in this holistic evaluation process. 

7. Limitations 

The integrated framework improves oil adsorbent material design and selection, 
but it has several drawbacks that need further study. Lab-scale experiments and 
simulations may not accurately simulate spills in this study. To account for changing 
environmental conditions and material degradation, future research should use real-
time monitoring and dynamic simulations. Predictable models in controlled 
environments. Real-time data could improve model accuracy and applicability for oil 
spill predictions and dynamic adjustments. Dynamic oil spill simulation, which 
accounts for temperature, flow rate, and environmental variables, better simulates 
field material performance. LCA-based optimization is promising. This study improved 
adsorbent materials' technical and economic performance, but a full LCA could assess 
their environmental impact from production to disposal. Researchers found high-
performance, low-resource, carbon, and waste materials using LCA in optimization. 
This would help oil spill cleanup materials meet circular economy and sustainability 
goals. 

Adding real spill scenarios improves modeling. Although simplified conditions may 
not fully capture real-world spills' complexities, such as oil type, spill size, and 
environmental conditions, the study's simulations provided valuable material 
performance insights. Future research should simulate larger spills, account for crude 
and diesel oils, and consider wind, temperature, and water salinity effects on material 
performance. This would make this study's materials lab-efficient and scalable for 
remediation. Last, this study enhances oil spill remediation green porous adsorbent 
material design and evaluation. Experimental optimization, computational simulation, 
machine learning, and multi-criteria decision-making created a technically optimized 
and contextually relevant material selection framework. The results suggest using 
multiple methods to assess material performance and selection. Integrating real-time 
monitoring, dynamic simulations, LCA-based optimization, and spill scenarios 
requires better research. Fixing these issues will improve material accuracy, scalability, 
and sustainability and solve global oil pollution. 

8. Research Implications 

This study shows how to design and evaluate green porous oil adsorbent materials 
using optimization, simulation, machine learning, and decision-analysis tools across 
the material development pipeline. A systems-level framework is used to identify, 
model, and optimize performance-driving factors like pore structure, surface 
functionality, and synthesis conditions, unlike trial-and-error methods. RSM for 
experimental optimization, COMSOL/ANSYS for flow and adsorption modeling, and 
machine learning for predictive accuracy reduce experimental cost and increase 
efficiency. AHP-TOPSIS decision-making justifies material selection based on cost, 
sustainability, and scalability. This integrated approach provides a flexible, data-driven 
template for other environmental remediation materials or adsorbent applications 
beyond oil spills, making the research scalable and transferable in materials 
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engineering. 

This research has major academic and practical implications. Predictive modeling 
can speed up materials screening and evaluation, reducing lab testing and improving 
performance confidence. Practitioners and environmental engineers can use the 
research to choose cost-effective, sustainable, and high-performing industrial 
adsorbents. Sensitivity and trade-off analyses help decision-makers choose materials 
for project priorities like low-cost rapid response or environmentally friendly sensitive 
ecosystems. Interpretable machine learning and simulation tools enable adsorbent 
design innovation by understanding structure–property–performance relationships. 
This research lays the groundwork for oil spill remediation and environmental 
sustainability using optimized green materials. 
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Appendix I 

AHP - Analytic Hierarchy Process 

ANSYS - Engineering Simulation Software 

ANN - Artificial Neural Network 

CFD - Computational Fluid Dynamics 

DOE - Design of Experiments 

LCA - Life Cycle Assessment 

MCDM - Multi-Criteria Decision Making 

MOO - Multi-Objective Optimization 

RSM - Response Surface Methodology 

TOPSIS - Technique for Order Preference by Similarity to Ideal Solution 

TGA - Thermogravimetric Analysis 

MD - Molecular Dynamics 

MATLAB - Matrix Laboratory 

ML - Machine Learning 

pH - Potential of Hydrogen (a measure of the acidity or alkalinity of a solution) 

BET - Brunauer-Emmett-Teller (a method for measuring surface area) 

cP - Centipoise (a unit of dynamic viscosity) 

LCA+O - Life Cycle Assessment combined with Optimization 

 


